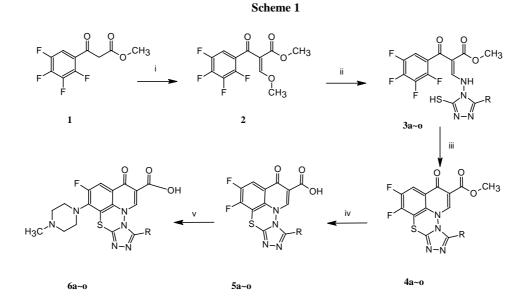
Synthesis and Antibacterial Activity of New Tetracyclic Triazolothiadiazino Fluoroquinolones

Guo Qiang HU¹*, Zhong Quan ZHANG¹, Wen Long HUANG², Hui Bin ZHANG², Sheng Tang HUANG²

¹Medical College of Henan University, Kaifeng 475004 ² China Pharmaceutical University, Nanjing 210009

Abstract: A series of novel 9-fluoro-10-(4-methylpiperazin-1-yl)-3-substituted-8-oxo-8*H*-[1,2,4] triazolo[3,4-b]thiadiazino[6,5,4-ij]quinoline-7-carboxylic acids was prepared by a facile synthetic method and the *in vitro* antibacterial activity against Gram-postive (G^+) and Gram negative (G^-) bacteria was primarily evaluated.


Keywords: Antibiotics, tetracyclicquinolone, synthesis, antibacterial agents.

Since nalidixic acid¹ was first clinically used as a potent antibacterial agent, many analogues, such as bicyclic ciprofloxacin², tricyclic ofloxacin³, have become an important class of therapeutical compounds. Recently, novel tetracyclic fluoroquinolones having a thiazolooxazine ring with potent antibacterial activity against both G^+ and G^- have been reported⁴. In order to find better antibacterial agents for our urgent research of the multidrug resistant (MDR)⁵, we herein describe a facile synthetic method of novel tetracyclic fluoroquinoline carboxylic acids containing triazolothiadiazine ring at 1,8 positions of quinoline carboxylic acids (**Scheme 1**).

2, 3, 4, 5-Tetrafluorobenzoyl methyl acrylate 1 was condensed with methyl ortho- formate in acetic anhydride to give the corresponding ether compound 2, followed by the condensation with 4-amino-5-phenyl-4*H*-1,2,4-triazole-3-thiol (AMT)⁶, respectively, to afford the key intermediates 3, which were cyclized with K_2CO_3 in DMF to obtain tetracyclic esters 4 and followed by the hydrolysis under acidic condition to form bifluorotetracyclic carboxylic acids 5, the direct replacement of 10-fluorine atom of compounds 5 with methylpiperazine in *i*-Pr-OH (without going through general borine complexes of 4) to achieve the free base 6, which were recrystallized from 3 % hydrochloric acid to obtain the corresponding salts. The structure of the products was confirmed by elemental analysis (EA),¹H NMR, IR and MS⁷.

The *in vitro* antibacterial activity of compounds **6**-HCl against G^+ and G^- demonstrated that the increase in the size of the alkyl substituents at 3-position of **6a~f**

^{*} E-mail: hgqxy@sina.com.cn

R: **a**, H; **b**, CH₃; **c**, CH₂CH₃; **d**, *n*-C₃H₇; **e**, *n*-C₄H₉; **f**, *n*-C₅H₁₁; **g**, C₆H₅; **h**, *p*-CH₃OC₆H₄; **i**, *m*-CH₃OC₆H₄; **j**, *p*-CH₃C₆H₄; **k**, 3,4-(CH₃O)₂C₆H₃; **l**, 3,4-(OCH₂O)₂C₆H₃; **m**, 3,4,5-(CH₃O)₃C₆H₂; **n**, *p*-FC₆H₄; **o**, *p*-ClC₆H₄. reagents and conditions: i, CH(OCH₃)₃, Ac₂O, xyl, reflux, 6h; ii, AMT, MeOH, rt ~ reflux,5h; iii,

DMF, K_2CO_3 , rt ~ 120°C, 12h; iv, HAc-HCl, reflux, 10h; v, methylpiperazine, *i*-PrOH, 140°C,8h.

obviously reduce the antibacterial activity. The activity against both G^+ and G^- bacterial of those compounds with substituent R (H or CH₃) is comparable to that of ofloxacin; for aryl substituents, most compounds with aryl substituent R show no effect or poor activity against G^+ and G^- bacterial, except **6h**, **i**, **l**. The detailed studies on their inhibitory activity on gyrase and structure activity relationship (SAR) are progressing.

Acknowledgment

We appreciate that this project is supported by the National Natural Science Foundation of China (No. 30070861).

References and Notes

- 1. G. Y. Lesher, E. J. Froelich, M. D. Grued, J. Med. Chem., 1962, 5, 1063.
- 2. H. Y. Guo, Y. Tan, Z. Y. Li, Acta Pharma. Sinia, 1987, 22 (5), 373(in Chinese).
- 3. H. Lode, Drugs, 1987, 34, 21.
- (a) D. T. W. Chu, J. Med. Chem., 1986, 29 (8), 1531; (b) D. T. W. Chu, J. Heterocyclic. Chem, 1987, 24, 453; (c) J. Yoshkazu, J. Med. Chem., 1993, 36(18),2621; (d) I. Yoshimasa, J. Med. Chem., 1994, 37(5), 586; (e) T. Masahiro, J. Med. Chem., 1992, 35 (1), 94.
- 5. B. Toyama, M. Squilb, Drugs Future, 2001, 26 (12), 1202.
- 6. J. R. Reid, N. D. Hlindel, J. Heterocyclic., 1976, 13, 925.
- 7. **6a** m p 278~280°C as pale yellow crystal, IR (KBr, ν cm⁻¹): 3445, 1689,1463, 1108 ; ¹HNMR(D₂O, δ ppm): 9.56(s,1H), 8.84(s,1H), 7.28(d,1H,*J*=12.6Hz), 3.56~3.82(m,8H), 2.83(s,3H); MS(*m*/*z*): 402(M⁺); EA calcd. for C₁₇H₁₅FN₆O₃S•HCl: C,46.53, H, 3.67; N, 19.15.

Found C,46.72; H, 3.77; N, 19.02.

6b m p 258~260°C as yellow crystal, IR (KBr, $v \text{ cm}^{-1}$): 3445, 1686,1472, 1106 ; ¹HNMR(D₂O, δ ppm): 8.86(s,1H), 7.62(d,1H, *J*=12.6Hz), 3.64~3.80(m,8H), 2.80(s,3H), 2.86(s,3H); MS(*m/z*): 416(M⁺); EA calcd. for C₁₈H₁₇FN₆O₃S•HCl: C,47.74, H, 4.01; N, 18.56. Found C,47.48; H, 4.15; N, 19.06.

6c m p 246~247°C as light yellow crystal, IR(KBr, $v \text{ cm}^{-1}$): 3448, 1682,1463, 1106; ¹HNMR(D₂O, δ ppm): 8.78(s,1H), 7.75(d,1H, *J*=13Hz), 3.34~3.80 (m,8H), 3.17 (q,2H,*J*=7.2Hz),2.76(s,3H), 1.37(t,3H, *J*=7.5Hz); MS(*m*/*z*): 430(M⁺); EA calcd. for C₁₉H₁₉FN₆O₃S•HCl: C,48.87, H, 4.32; N, 18.00. Found C,48.62; H, 4.47; N, 18.16.

6d m p 243~245°C as light yellow crystal, IR (KBr, $v \text{ cm}^{-1}$): 3048, 1682,1463, 1103; ¹HNMR(D₂O, δ ppm): 8.84(s,1H), 7.65(d,1H, *J*=13Hz), 3.38~3.87(m,8H),3.12(t,2H,*J*=6Hz), 2.74(s,3H),1.76~1.85 (m,2H),1.02(t,3H, *J*=7.2Hz); MS(*m*/*z*): 444(M⁺); EA calcd. for C₂₀H₂₁FN₆O₃S•HCl: C,49.95, H, 4.61; N, 17.47. Found C,50.12; H, 4.70; N, 17.67.

6e m p 212~214°C as light yellow crystal, IR (KBr, ν cm⁻¹): 3448, 1686,1465, 1087; ¹HNMR(D₂O, δ ppm): 8.75(s,1H), 7.65(d,1H, *J*=12.6Hz), 3.28~3.86(m,8H), 3.14(t,2H), 2.87 (s,3H), 1.53(m,2H),1.35 (m,2H),0.93 (t,3H, *J*=7.5Hz); MS(*m*/z): 458(M⁺); EA calcd. for C₂₁H₂₃FN₆O₃S•HCl: C,50.96, H, 4.89; N, 16.98. Found C,51.17; H, 5.00; N, 17.23.

6f m p 202~204°C as light yellow crystal, IR(KBr, ν cm⁻¹): 3378, 1678,1457, 1107; ¹HNMR(D₂O, δ ppm): 8.85(s,1H), 7.72(d,1H, *J*=13Hz), 3.42~3.86(m,8H), 3.12(t,2H),

2.84(s,3H),1.50~1.27(m,6H), 0.91(t,3H, J=7.6Hz); MS(m/z): 472(M⁺); EA calcd. for C₂₂H₂₅FN₆O₃S•HCl: C,51.95, H, 5.15; N, 16.51. Found C,51.77; H, 5.04; N, 16.82.

6g m p 289~291°C as yellow crystal, IR (KBr, ν cm⁻¹): 3448, 1674,1453, 1086; ¹HNMR(D₂O, δ ppm): 8.84(d,1H, *J*=12.5Hz), 7.28~7.74(m,6H), 3.35~3.87(m,8H), 2.84(s,1H); MS(*m/z*): 478(M⁺); EA calcd. for C₂₃H₁₉FN₆O₃S•HCl : C,53.64; H, 3.91; N, 16.32. Found C, 53.88; H, 4.14; N, 16.54.

6h m p 278~281°C as yellow crystal, IR (KBr, $v \text{ cm}^{-1}$): 3456, 1676,1452, 1084 ; ¹HNMR(D₂O, δ ppm): 8.86(s,1H), 7.26~7.68(m,5H), 3.65~3.97(m,11H), 2.84(s,3H); MS(*m*/*z*): 508(M⁺); EA calcd for C₂₄H₂₁FN₆O₄S•HCl: C,52.89; H, 4.07; N, 15.42. Found C,53.17; H, 4.18 N, 15.70.

6i m p 268~270°C as yellow crystal, IR(KBr, $v \text{ cm}^{-1}$): 3448, 1672, 1450, 1103; ¹H NMR(D₂O, δ ppm): 8.86(s,1H), 7.26~ 7.82(m,5H), 3.35~3.96(m,11H), 2.88(s,3H); MS(*m*/*z*): 508(M⁺); EA calcd. for C₂₄H₂₁FN₆O₄S•HCl: C,52.89; H, 4.07; N, 15.42. Found C,53.13; H, 4.34 N, 15.62.

6j m p 301~302°C as yellow crystal, IR(KBr, $v \text{ cm}^{-1}$): 3378, 1678,1453, 1076; ¹H NMR(D₂O, δ ppm): 8.86(s,1H), 7.26~7.74(m,5H), 3.32~3.87(m,8H), 2.87(s,3H), 2.54(s,3H); MS(*m*/*z*): 492(M⁺); EA calcd. for C₂₄H₂₁FN₆O₃S•HCl: C,54.49; H, 4.19; N, 15.89. Found C,54.72; H, 4.18 N, 16.12.

6k m p 282~284°C as yellow crystal, IR (KBr, $v \text{ cm}^{-1}$): 3378, 1676,1463, 1082; ¹HNMR (D₂O, δ ppm): 8.78(s,1H), 7.23~7.74(m,4H), 3.28~3.97(m,14H), 2.86(s,3H); MS(*m/z*): 538(M⁺); EA calcd. for C₂₅H₂₃FN₆O₅S•HCl: C,52.22; H, 4.21; N, 14.62. Found C,52.53; H, 4.36 N, 14.36. **6l** m p 328~330°C as yellow crystal, IR (KBr, $v \text{ cm}^{-1}$): 3425, 1683,1453, 1100; ¹HNMR (D₂O,

of in p 328~350 C as yearow crystar, iK (KBi, *v* cm⁻¹): 3423, 1083,1433, 1100, FININK (D₂O, δ ppm): 8.81(s,1H), 7.32~7.83 (m,4H), 5.98(s,2H),3.35~3.94(m,8H), 2.82(s,3H); MS(*m*/*z*): 522(M⁺); EA calcd. for C₁₉H₂₄FN₆O₅S•HCl: C,51.57; H, 3.61; N, 15.03. Found C,51.74; H, 3.52 N, 15.17.

6m m p 254~255°C as yellow crystal, IR (KBr, $v \text{ cm}^{-1}$): 3446, 1674,1462, 1084; ¹HNMR(D₂O, δ ppm): 8.81(s,1H), 7.16~7.73(m,3H), 3.25~3.94 (m,17H), 2.86(s,3H); MS (*m/z*):568(M⁺); EA calcd. for C₂₆H₂₅FN₆O₆S•HCl: C,51.61; H, 4.33; N, 13.89. Found C,51.53; H, 4.56 N, 14.12.

6n m p 301~303°C as yellow crystal, IR (KBr, ν cm⁻¹): 3440, 1675,1458, 1079; ¹HNMR(D₂O, δ ppm): 8.84(s,1H), 7.28~7.73(m,5H), 3.36~3.84(m,8H), 2.87(s,3H); MS(*m/z*): 496(M⁺); EA calcd. for C₂₃H₁₈F₂N₆O₃S•HCl: C,51.83; H, 3.59; N, 15.77. Found C,52.08; H,3.72; N, 15.64. **60** m p 274~276°C as yellow crystal, IR(KBr, ν cm⁻¹): 3386, 1685,1462, 1075; ¹HNMR(D₂O, δ ppm): 8.89(s,1H), 7.25~7.86(m,5H), 3.28~3.84 (m,8H), 2.85(s,3H),; MS(*m/z*): 512/514(M⁺); EA calcd. for C₂₃H₁₈ClFN₆O₃S•HCl : C,50.28; H, 3.49; N, 15.30. Found C,50.46; H,3.61; N, 15.12.

Received 26 December, 2002